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Introduction

For simplicity, we assume the response data are dichotomous. That is, the

responses are either right or wrong, coded as 1 or 0, respectively. We consider calibrating

the multidimensional logistic model (the unidimensional three parameter logistic (3PL)

model being its special case). The common approach to calibrating this class of models is

to use the marginal maximum likelihood estimation approach by Bock and Aitkin (1981).

That is, we maximize the marginal likelihood function, the likelihood function integrated

over the latent ability distribution. To achieve this, the so-called EM algorithm by

Dempster, Laird, and Rubin (1977) needs to be used because of the difficulty of directly

maximizing the marginal likelihood function. In the M (Maximization) step of the EM

algorithm, optimization procedures such as Newton-Raphson are used, resulting in

BILOG (Mislevy and Bock, 1982) for calibrating the unidimensional 3PL model and later

TESTFACT (Bock, Gibbons, and Muraki, 1988) for calibrating multidimensional logistic

model. In this paper, we will be looking into new optimization procedures such as

Genetic Algorithm (GA) to improve upon the use of Newton-Raphson. The advantages of

using global optimization procedures such as GA are that this kind procedure won't be

easily fooled by local optima and saddle points. And because they don't use gradient

information, they can be easily implemented to higher dimensional data. Yet also

because of this, they converge slower than Newton-Raphson. However, we can combine

the two approaches to fully exploit their respective advantages. That is, we can use GA to

find a suitable starting point that is close enough to the global optima, and then use

Newton-Raphson to speed up the convergence. We will concern mostly on calibrating the

unidimensional 3PL model in this paper because that model is by far the most widely

used one in large-scale standardized tests. Using unidimensional 3PL model estimates

from recent TOEFL administrations to generate examinee responses, we will show the

effectiveness of our new method using these simulated data. Finally we will discuss

briefly on how to implement our new method to multidimensional data.

Method

The unidimensional 3PL model

Assume there are a total of I items in the test. Under the unidimensional 3PL

model, the probability of answering item i correctly given that the examinee has ability 0

is
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1c,
pi(19;fli)=-ci

4- 1+ exp(-1.701a1 (B i))

where a, is the discrimination, 13, is the difficulty, c, is the guessing for item i, and

fi, = (a,,b,,c,) is the vector of item parameters.

Assume 9 is distributed as N(.L, cr2 ), the normal distribution with mean .t and

variance a2. Appropriate transformations on 9 as well as on the item parameters will

make 0 distributed as N(0, 1), the standard normal distribution, and give the same

likelihood function. Thus, the density of 0 is assumed to be

1
02

g(e) exP(T)
Using the local independence of the examinee responses given ability 0, and

denote the totality of item parameters as B = (fi ...,A,), the marginal likelihood of the

response matrix Y is given by

where

L(Y;B ) nksP(Y,1 0;B)g(0)d0

P(Icl 0;B) = P(Yki I 0; f3 i) =111),(0; 13 i)Yki (1 Pi (0; )3

Taking logarithm, the log likelihood is

ln L(Y; B ) = ln JP(YkI0;B)n(0)d0

The EM algorithm

Since directly maximizing In L(Y; B ) over B is infeasible, we use the EM

algorithm.

The EM algorithm, as its name suggests, is divided into two steps: the E

(Expectation) step, and the M (Maximization) step. Cyclical application of the E step and

the M step continues till a certain convergence criterion is met.

In the E step, the conditional expectation of log likelihood of complete data given

the incomplete data and current parameter estimates is computed. In calibrating the

unidimensional 3PL model, the incomplete data is the observed response matrix Y and

the complete data is the responses plus the examinee latent ability vector 0. So in the E

step, the following quantity is computed

Q(B;B') = E[ln L(BIY,O) I Y;131

where the expectation is taken with respect to 0. Here B' is the parameter estimates

resulted from the M step in the previous iteration. Here and below we follow the
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standard notation in the literature of EM algorithm. It is understood that the Q functions

in the E and the M steps depend on the observed response matrix Y.

For the unidimensional 3PL model the following decomposition holds

Q(B;B') = Q,(fi ,;B') +const.

where Q,(fl ,; B') = y, J In P(Y, I B;,(3; g(61Y,;B'),r(0)de9 involves only the item parameter

A for item i, and (1501Y,;B'). P(Y kl 0; B') / J P(Y,I 0; B' )Pr( 0)dO is the posterior density.

In the M step, Q(B;B') is maximized over the parameters B for given B' and Y.

Because of the decomposition in the E step, we can separately maximize each

Q, (A, ;B') over A,.

Let A(0) = (601 Y, ; B') , and R,(0)= kY,,. ;13'), we get

Q, (/3, ; B') = [1nP, (0; fi ,)R, (0) + ln(1 P, (0; )6 ,))(A(0) R,(0))Pr(0)d0

Unfortunately, no closed-form solution exists for maximizing Q; (/1 ; B') over A,.

We could use optimization procedures such as Newton-Raphson. However, procedures

using gradient information such as Newton-Raphson behave only locally. That is, they

only work if their starting points are close enough to the global optima. Otherwise, they

could be easily trapped to a local optima or even saddle points. To avoid this, we use

Genetic Algorithm (Michalewicz, 1994) to first find a suitable starting point for Newton-

Raphson. Once we are close enough to the true global optima, we use Newton-Raphson

to speed up the convergence.

Genetic Algorithm

Any optimization task can be thought of as a search through a space of potential

solutions. Genetic Algorithm (GA) is a stochastic algorithm whose search method

emulates the natural phenomena of genetic inheritance and Darwinian strife for survival.

A GA maintains a population of individuals P(t) = { , xn } for use in iteration t. Each

individual is a vector and represents a potential solution to the problem at hand (i.e., a

potential optimizer of the problem). Each solution x: is evaluated to give some measure

of "fitness". Then, as a result of iteration t a new population P(t +1) for use in iteration

t +1 is formed by selecting the more "fit" individuals (select step). Some members of this

new population undergo transformations (alter step) by means of "genetic" operators to

form new potential solutions. There are unary transformations (mutation type), which



create new individuals by a small change in a single individual, and higher order

transformations (crossover type), which create new individuals by combining segments

from several (two or more) individuals. After several generations the program converges

with the goal being that the best individual in this final generation represents a near-

optimum solution.

A Genetic Algorithm for a particular problem must have the following

components:

a representation for potential solutions to the problem,

a way to create an initial population of potential solutions,

an evaluation function that plays the role of the environment, rating solutions in terms

of their "fitness",

genetic operators that alter the composition of offspring,

values for various parameters that the Genetic Algorithm uses (population size,

probabilities of applying genetic operators, etc.)

Implementation of a Genetic Algorithm

As an example, let us consider item 1. Dropping the index of item for the

parameters, the item parameters to be estimated are /3 = (a,b,c)T . At the current M step,

we are trying to maximize Q, (,6; B') over 13.

A Genetic Algorithm has the following elements:

1. population of solutions.

As we have mentioned above, an important property of Genetic Algorithm is that

it maintains a population of potential solutions while conventional search methods such

as Newton-Raphson process a single point of search space.

For the maximization problem here, a population of potential solutions is a set of

J vectors ,6 ..., A, where p,=(a,,b,,c,)T

2. initialization of the population.

We first replicate the maximizer of 13 from the previous EM cycle, /3, J times to

get a set of J p's. After the genetic operations defined later, this set of vectors gives the

initial population P(0), where they are vastly different from each other. Intuitively the

maximizer of 13 from the previous EM cycle is close to the "true" value of [3. After the

genetic operations, the chances are some of them are little to unchanged, yet we have
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added the variability to the initial population, which in a way is an essence of Genetic

Algorithm.

3. evaluation function.

An obvious choice is the objective function to be maximized, in our case

Q,(fi; B') . In theory, any monotone transformation of the objective function can be used

as the evaluation function, so the choice is determined by the ease of computation of a

specific transformation. The value of the evaluation function at a possible solution gives a

measure of "fitness" of that solution.

After the evaluation function has been chosen, the selection procedure needs to

be determined. Theoretically, any selection procedure that has the probability of a

possible solution being chosen proportional to the value of a monotone transformation of

the evaluation function at the solution is allowed. Our selection procedure uses the rank

of the value of evaluation function at a possible solution as a basis to select the more fit

solutions.

For each possible solution we first compute Q, ; B') and rank fii in

ascending order according to its Q, value. Suppose the ranks are r..., 7'1 , then the

probability of A being selected is

2r]
P(fi

r
,)= =

+1)

The higher the rank, the more likely a possible solution gets selected.

The advantage of using ranks as basis for selection is the scale of selection

probability is comparable for all the possible solutions. If the selection probability is based

on values of evaluation function at possible solutions, it may happen that some of the

solutions give so small a value of evaluation function that they seldom get selected.

Consequently, the possibility of have variability by selection cannot be well achieved.

4. genetic operators.

The genetic operators for our problem are mutation and crossover.
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crossover

Even though we say crossover is a binary transformation, it differs from the

conventional transformation in that a pair of vectors are transformed into a new pair of

vectors instead of a single vector.

To perform the crossover operation, we randomly select pc -I solution vectors for

crossover, where pc is the probability for the crossover operation. For the solution vectors

selected, first we pair them up, then each pair generates a new pair by the scheme below:

If s = (v..., v, )7' and s,' =(w...,w,)T are crossed after the k-th position, the

resulting offspring are:

st:1 =(vi,...,v,/WkAl,...,W.)T and swiki
=

(
sw1,,wk,vk+1 f , 7) rr)T

Here the position of crossover k is chosen randomly. After the crossover, the original pair

is discarded.

mutation

Mutation is a unary transformation that generates a new solution vector from a

chosen solution vector. To perform the mutation operation, we randomly select

p, J solutions for mutation, where p, is the probability of mutation. The vectors chosen

are then mutated accordingly using the scheme below:

If s =(v...,v,)T is a solution vector chosen, the resulting offspring is a vector

s'*1 =(v;,...,v.,)T , where v, is vk plus a random noise E k distributed as N(0, o , ).

5. values for the parameters of Genetic Algorithm.

The population size can be anywhere from tens to thousands, and there is a

tradeoff between accuracy and efficiency. We usually use 100 as the population size.

When initializing the population, we set the probabilities of applying genetic

operators to be relatively large to get more variability because we start with replications

of the maximizer from the previous EM cycle. So for example, on initialization, the

probability setting can be p, = 0.7 and pc = 0.5 . After initialization, for each generation of

evolution, the probability setting can be p, = 0.5 and pc = 0.3 .

The maximum generation number is set at 100.

So each generation of the evolution consists of a cycle of mutation, crossover, and

selection, and after each generation we always keep the best solution vector, which is /3,1 .

Using our Genetic Algorithm, the maximizer /3 of Q, (fi; B') is given by the best

solution vector from the generation of evolution at the stopping time.
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Looping over the E and M steps, we get an EM sequence of item parameter

estimates. We can stop the EM process either after a fixed number of iterations, or after

the variation of log likelihood lnL(Y;B) using the maximizer of B from the previous

several EM cycles has been small enough.

The item parameter estimates B can then be input as the starting point for a

BILOG like estimation procedure.

Simulation study and results

Simulation settings

We use item parameter estimates from Section 2 (Structure and Written

Expression) of three recent Test of English as a Foreign Language (TOEFL)

administrations to simulate examinee responses. This section has 38 operational items.

Assuming a unidimensional 3PL model, the item parameter estimates were obtained

through calibration of examinee responses using BILOG. The number of examinees in our

simulation study is either 500 or 1000. The sample size of 500 reflects the lower limit for

calibrating the TOEFL operational forms, and the larger sample of 1000 is chosen to see

how much an effect of sample size is to the calibration of the tests using our new method.

For each sample size, the examinee ability distribution is assumed to be N(0, 1). When

using BILOG, the calibration parameters are set using empirical evidence as below:

item control parameters are set at a=1.00, b=-0.50, and c=0.23,

prior distribution for a is Log-Normal with Mean 0.00 and default S.D. 0.50,

prior distribution for b is Normal with Mean -0.50 and default S.D. 2.00,

prior distribution for c is Beta with Alpha 4.45 and Beta 12.55 (corresponding to a

weight of 15.00 for subjects of low ability), and

subject prior distribution is N(0, 1).

To compare the calibration results, we compute the summary statistics of the item

parameter estimates from different method and compare them with those of the true item

parameters. Since different sets of item parameters can give almost identical item

characteristic curves (ICCs), we also compute the root mean squared difference (RMSD)

between the ICC from the item parameter estimates and the one from the true

parameters using the formula below:

ICC RMSD = [5 (P,,, (0 P,,,,,,,(0))2 g(t9)d01

It is the ICCs rather than the item parameters themselves that are used in statistical

analyses.
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Since the test characteristic curve (TCC) is used in operations such as the IRT true

score equating, in scaling, and in test analysis, we compute the RMSD between the TCC

from the item parameter estimates and that from the true parameters using a formula

similar to the one used in computing the RMSD between the ICCs. We also include

overlay plots of TCCs using the true parameters and the parameter estimates from

different methods to visually show how close they are throughout the ability range of our

concern.

Simulation results

Tables 1 and 2 give the summary statistics of the item parameter estimates using

different methods and those of the true parameters for sample sizes of 1000 and 500,

respectively. Also shown in Tables 1 and 2 are the summary statistics of the ICC RMSDs

between the item parameter estimates and the true parameters as well as the TCC RMSDs

between the item parameter estimates and the true parameters.

Table 1. Comparison of results using different calibration methods

sample size=1000

a b c ICC RMSD

TCC RMSDMean S.D. Mean S.D. Mean S.D. Mean S.D.

Form A

BILOG 1.035 0.317 -0.382 0.840 0.250 0.095 0.025 0.011 0.338

GA 1.091 0.379 -0.439 0.795 0.257 0.168 0.028 0.013 0.584

True 0.948 0.259 -0.443 0.960 0.239 0.127

Form B

BILOG 1.061 0.292 -0.182 0.882 0.227 0.072 0.024 0.011 0.340

GA 1.072 0.349 -0.389 0.907 0.196 0.127 0.038 0.018 1.065

True 0.943 0.236 -0.283 0.993 0.198 0.099

Form C

BILOG 1.066 0.247 -0.350 0.766 0.245 0.085 0.024 0.012 0.287

GA 1.113 0.311 -0.432 0.687 0.243 0.167 0.031 0.016 0.665

True 0.997 0.245 -0.409 0.830 0.229 0.110
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Table 2. Comparison of results using different calibration methods

sample size=500

a b c ICC RMSD

TCC RMSDMean S.D. Mean S.D. Mean S.D. Mean S.D.

Form A

BILOG 1.045 0.359 -0.471 0.862 0.240 0.073 0.028 0.016 0.346

GA 1.093 0.448 -0.559 0.896 0.213 0.164 0.034 0.017 0.696

True 0.948 0.259 -0.443 0.960 0.239 0.127

Form B

BILOG 1.069 0.367 -0.252 0.902 0.218 0.054 0.026 0.017 0.347

GA 1.067 0.392 -0.457 0.898 0.184 0.147 0.046 0.023 1.330

True 0.943 0.236 -0.283 0.993 0.198 0.099

Form C

BILOG 1.076 0.328 -0.429 0.787 0.232 0.060 0.029 0.016 0.341

GA 1.135 0.407 -0.549 0.779 0.204 0.164 0.039 0.020 0.894

True 0.997 0.245 -0.409 0.830 0.229 0.110

Li (1997) has shown that using GA alone gives comparable calibration results as

those given by using BILOG. From Tables 1 and 2, it is clear that using GA alone gives

acceptable calibration results for most of the statistical analysis purposes where the ICCs

or the TCCs are used. Certainly it is not surprising to see that with a larger sample size

the calibration results become more accurate.

Figures 1 and 2 below give the TCC overlay plots for the three forms in our study

with Figure 1 for sample sizes of 1000 and Figure 2 for sample sizes of 500. There are

three curves in each plot: the solid one is the TCC from the true item parameters, the long

dashed one is the TCC from the item parameter estimates using BILOG, and the short

dashed one is the TCC from the item parameter estimates using GA alone.

From Figures 1 and 2, it is clear that the TCCs from the item parameter estimates

using BILOG and using GA alone are quite close to the TCC from the true parameters for

each of the three forms and either sample size. Certainly it appears that the TCC from

BILOG item parameter estimates is closer to the truth than the TCC from GA item

parameter estimates for each form (especially Form B) and either sample size. It seems

true also that the TCCs are more accurately estimated using a larger sample size.

1.2







It turns out that using GA to get the starting points and then using BILOG gives

identical calibration results as using BILOG which is no surprise. However, the number

of EM cycles for BILOG is reduced and the increase in log likelihood is much smaller as if

BILOG is only doing fine tuning when the starting points are determined by GA. Table 3

shows the number of EM cycles and the increase in log likelihood using GA then BILOG

as compared to those using BILOG alone.

Table 3. Number of EM cycles and increase in log likelihood using different methods

number of EM cycles increase in log likelihood

Form A, sample size=1000

GA then BILOG 30 6.469

BILOG 36 2965.759

Form A, sample size=500

GA then BILOG 27 8.082

BILOG 34 1555.711

Form B, sample size=1000

GA then BILOG 38 8.055

BILOG 49 36121.708

Form B, sample size=500

GA then BILOG 40 0.770

BILOG 50 1870.096

Form C, sample size=1000

GA then BILOG 30 5.198

BILOG 39 2730.275

Form C, sample size=500

GA then BILOG 33 8.909

BILOG 37 1400.397

As can be seen from the above table, the number of EM cycles is reduced by at

least 10% (and sometimes more than 20%). More important to note yet, the increase in the

objective function of log likelihood is less than 10 (compared with the final values which

are in the magnitude of 18000 for sample sizes of 1000 and 9000 for sample sizes of 500).

Also from Table 3, the number of EM cycles and the increase in log likelihood are

significantly larger for Form B for both sample sizes than for the other two forms. By

examining the priors and the truth closely, we see that the priors and the control
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parameters for b are not as close to the truth for Form B as for the other two forms. We

believe consequently this causes the BILOG to take more EM cycles to converge.

Note

Since the GA in our study is used to provide the starting points for BILOG only,

we have deliberately avoided using some of the fine tuning techniques available from the

literature. Also, we have set a rather loose convergence criterion for the GA. Yet it is clear

from our results above that using GA alone would give us quite satisfactory calibration

results in terms of the ICCs and TCCs.

Discussion

Statistical models are used to summarize the information contained in a data in a

simplified and realistic way. The parameter estimates of an underlying model for the data

are used in many different areas. Accurate estimates of parameters are crucial to many

operations of a testing program, such as in IRT true score equating, in scaling, in item and

test analysis, and in research. Our new method is very promising in giving accurate

calibration results more efficiently of the unidimensional 3PL model which is now widely

used in many large-scale testing programs. Also as discussed below, the method can be

easily generalized to calibrate multidimensional logistic model, which many researchers

become more and more interested in using. As we mentioned earlier, a unique feature

that distinguishes GA from other methods is that a GA performs a multi-directional

search by maintaining a population of potential solutions and encourages information

formation and exchange between these directions. Gas have been quite successfully

applied to optimization problems like scheduling, adaptive control, cognitive modeling,

optimal control problems, and database query optimization (Bennett, Ferris, and

Ioarinidis, 1991; De Jong, 1985; Goldberg, 1989; Michalewicz, Krawczyk, Kazemi, and

Janikow, 1990). Since Gas are parallel in nature, with parallel computing becoming more

and more practical, our new calibration method will for sure become more computing

efficient.

Implementing the GA to multidimensional logistic model

Certainly the solution vectors need to be changed accordingly, and the genetic

operators need to be changed to reflect the changes in the dimension of the solution

vectors. However, it is obvious these changes are quite straightforward especially when

compared with the changes needed in computing the gradient vectors and the Hessian

matrix.
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